On the geometry of equivariant compactifications of the vector group

(joint works with Z. Huang, B. Fu, A. Dubouloz and T. Kishimoto)

Pedro Montero

Universidad Técnica Federico Santa María Valparaíso, Chile

BIRATIONAL GEOMETRY SEMINAR (BGS) - AUGUST 2025

§1. Motivation

Problem 27 on **Hirzebruch**'s (1954) problem list: Fix $n \in \mathbb{N}^{\geq 1}$, and Classify all the pairs (X, Δ) such that:

Problem 27 on **Hirzebruch**'s (1954) problem list: Fix $n \in \mathbb{N}^{\geq 1}$, and Classify all the pairs (X, Δ) such that:

• X: complex projective manifold of $\dim_{\mathbf{C}}(X) = n$.

Problem 27 on **Hirzebruch**'s (1954) problem list: Fix $n \in \mathbb{N}^{\geq 1}$, and Classify all the pairs (X, Δ) such that:

- X: complex projective manifold of $\dim_{\mathbf{C}}(X) = n$.
- $\Delta \subseteq X$ effective reduced (boundary) divisor such that $X \setminus \Delta \cong \mathbf{A}^n$.

Problem 27 on **Hirzebruch**'s (1954) problem list: Fix $n \in \mathbb{N}^{\geq 1}$, and Classify all the pairs (X, Δ) such that:

- X: complex projective manifold of $\dim_{\mathbf{C}}(X) = n$.
- $\Delta \subseteq X$ effective reduced (boundary) divisor such that $X \setminus \Delta \cong \mathbf{A}^n$.
- $\rho(X) = 1$.

Problem 27 on **Hirzebruch**'s (1954) problem list: Fix $n \in \mathbb{N}^{\geq 1}$, and Classify all the pairs (X, Δ) such that:

- X: complex projective manifold of $\dim_{\mathbf{C}}(X) = n$.
- $\Delta \subseteq X$ effective reduced (boundary) divisor such that $X \setminus \Delta \cong \mathbf{A}^n$.
- $\rho(X) = 1$.

In that case,

- X is a Fano manifold (i.e., $det(T_X) = \mathcal{O}_X(-K_X)$ is ample),
- \bullet $-K_X = m\Delta$, $m \in \mathbb{N}^{\geq 1}$.

Problem 27 on **Hirzebruch**'s (1954) problem list: Fix $n \in \mathbb{N}^{\geq 1}$, and Classify all the pairs (X, Δ) such that:

- X: complex projective manifold of $\dim_{\mathbf{C}}(X) = n$.
- $\Delta \subseteq X$ effective reduced (boundary) divisor such that $X \setminus \Delta \cong \mathbf{A}^n$.
- $\rho(X) = 1$.

In that case,

- X is a Fano manifold (i.e., $det(T_X) = \mathcal{O}_X(-K_X)$ is ample),
- $-K_X = m\Delta$, $m \in \mathbb{N}^{\geq 1}$.

Example: $(X, \Delta) \cong (\mathbf{P}^n, \mathbf{P}^{n-1})$.

Problem 27 on **Hirzebruch**'s (1954) problem list: Fix $n \in \mathbb{N}^{\geq 1}$, and Classify all the pairs (X, Δ) such that:

- X: complex projective manifold of $\dim_{\mathbf{C}}(X) = n$.
- $\Delta \subseteq X$ effective reduced (boundary) divisor such that $X \setminus \Delta \cong \mathbf{A}^n$.
- $\rho(X) = 1$.

In that case,

- X is a Fano manifold (i.e., $det(T_X) = \mathcal{O}_X(-K_X)$ is ample),
- $\bullet -K_X = m\Delta, \ m \in \mathbb{N}^{\geq 1}.$

Example: $(X, \Delta) \cong (\mathbf{P}^n, \mathbf{P}^{n-1})$.

Recall (Kobayashi-Ochiai): The Fano index of X is the maximum $\iota_X \in \mathbf{N}$ such that $-K_X = \iota_X A$ for some A ample divisor. Moreover, $1 \le \iota_X \le n+1$, and $\iota_X = n+1$ (resp. $\iota_X = n$) iff $X \cong \mathbf{P}^n$ (resp. $X \cong \mathbf{Q}^n \subseteq \mathbf{P}^{n+1}$).

Known cases:

•
$$n = 1$$
: $(X, \Delta) \cong (\mathbf{P}^1, \{\mathsf{pt}\})$

Known cases:

- n = 1: $(X, \Delta) \cong (\mathbf{P}^1, \{\mathsf{pt}\})$
- n = 2: $(X, \Delta) \cong (\mathbf{P}^2, \{\mathsf{line}\})$

Known cases:

- n = 1: $(X, \Delta) \cong (\mathbf{P}^1, \{\mathsf{pt}\})$
- n = 2: $(X, \Delta) \cong (\mathbf{P}^2, \{ \text{line} \})$
- n = 3: Several authors (1978–1993).

Known cases:

- n = 1: $(X, \Delta) \cong (\mathbf{P}^1, \{\mathsf{pt}\})$
- n = 2: $(X, \Delta) \cong (\mathbf{P}^2, \{ \text{line} \})$
- n = 3: Several authors (1978–1993).

Furushima (1993):

$$(X, \Delta) \cong \begin{cases} (\mathbf{P}^{3}, \{\mathsf{plane}\}) & (\iota_{X} = 4) \\ (\mathbf{Q}^{3}, \mathbf{Q}_{0}^{2}) & (\iota_{X} = 3) \\ (V_{5}, S_{i}) & i = 1, 2 \\ (V_{22}, S_{i}) & i = 1, 2 \end{cases} \quad (\iota_{X} = 2)$$

$$\Delta = \mathbf{Q}_{0}^{2} = \operatorname{Cone}(C) \subseteq \mathbf{P}^{3}$$

Known cases:

- $n = 1: (X, \Delta) \cong (\mathbf{P}^1, \{\mathsf{pt}\})$
- n = 2: $(X, \Delta) \cong (\mathbf{P}^2, \{\text{line}\})$
- n = 3: Several authors (1978–1993).

Furushima (1993):

$$(X, \Delta) \cong \left\{ \begin{array}{ll} (\mathbf{P}^3, \{\mathsf{plane}\}) & (\iota_X = 4) \\ (\mathbf{Q}^3, \mathbf{Q}_0^2) & (\iota_X = 3) \\ (V_5, S_i) & i = 1, 2 & (\iota_X = 2) \\ (V_{22}, S_i) & i = 1, 2 & (\iota_X = 1) \end{array} \right.$$

Kuznetsov-Prokhorov-Shramov (2018)

These are the only Fano 3-folds with $\rho(X) = 1$ and infinite $\operatorname{Aut}(X)$.

§2. Additive structures

We will impose some addional geometric restrictions by considering

- *G*, a connected linear algebraic group.
- X, an irreducible normal projective variety.

We will impose some addional geometric restrictions by considering

- ullet G, a connected linear algebraic group.
- X, an irreducible normal projective variety.

Definition

A G-structure on X is a regular action $G \times X \longrightarrow X$ such that for a general point $x_0 \in X$ we have that:

- The stabilizer $Stab(x_0)$ is trivial.
- 2 The orbit $G \cdot x_0 \cong G$ is dense.

In particular, $G \hookrightarrow X$ is an equivariant compactification.

We will impose some addional geometric restrictions by considering

- *G*, a connected linear algebraic group.
- X, an irreducible normal projective variety.

Definition

A G-structure on X is a regular action $G \times X \longrightarrow X$ such that for a general point $x_0 \in X$ we have that:

- The stabilizer $Stab(x_0)$ is trivial.
- **2** The orbit $G \cdot x_0 \cong G$ is dense.

In particular, $G \hookrightarrow X$ is an equivariant compactification.

Main examples:

We will impose some addional geometric restrictions by considering

- *G*, a connected linear algebraic group.
- X, an irreducible normal projective variety.

Definition

A G-structure on X is a regular action $G \times X \longrightarrow X$ such that for a general point $x_0 \in X$ we have that:

- The stabilizer $Stab(x_0)$ is trivial.
- 2 The orbit $G \cdot x_0 \cong G$ is dense.

In particular, $G \hookrightarrow X$ is an equivariant compactification.

Main examples:

• $G = \mathbf{G}_m^n = ((\mathbf{C}^{\times})^n, \cdot) \rightsquigarrow X$ toric variety \rightsquigarrow combinatorics

We will impose some addional geometric restrictions by considering

- ullet G, a connected linear algebraic group.
- X, an irreducible normal projective variety.

Definition

A G-structure on X is a regular action $G \times X \longrightarrow X$ such that for a general point $x_0 \in X$ we have that:

- **1** The stabilizer $Stab(x_0)$ is trivial.
- **2** The orbit $G \cdot x_0 \cong G$ is dense.

In particular, $G \hookrightarrow X$ is an equivariant compactification.

Main examples:

- $G = \mathbf{G}_m^n = ((\mathbf{C}^{\times})^n, \cdot) \rightsquigarrow X$ toric variety \rightsquigarrow combinatorics
- $G = \mathbf{G}_a^n = (\mathbf{C}^n, +) \rightsquigarrow X$ variety with \mathbf{G}_a^n -structure

Arithmetic Geometry:

Northcott (1949): Let $K \supseteq \mathbf{Q}$ be a number field and let $B \in \mathbf{R}^{>0}$. Then, $N(B) = \#\{p \in \mathbf{P}^n(K) \mid H_n(p) \leq B\}$ is finite.

Example $(K = \mathbf{Q})$: Let $p = (x_0, \dots, x_n) \in \mathbf{Z}^{n+1}$ s.t. $\gcd(x_0, \dots, x_n) = 1$, then $H_n(p) = \max_{0 \le i \le n} |x_i|$ and $N(B) \le C(n)B^{n+1}$.

The principle of Batyrev–Manin–Peyre \approx Let $X \subseteq \mathbf{P}^n(K)$ be a variety with many rational points. Then, the asymptotic growth of N(B) should be controlled by the geometry of X.

Arithmetic Geometry:

Northcott (1949): Let $K \supseteq \mathbf{Q}$ be a number field and let $B \in \mathbf{R}^{>0}$. Then, $N(B) = \#\{p \in \mathbf{P}^n(K) \mid H_n(p) \leq B\}$ is finite.

Example $(K = \mathbf{Q})$: Let $p = (x_0, \dots, x_n) \in \mathbf{Z}^{n+1}$ s.t. $\gcd(x_0, \dots, x_n) = 1$, then $H_n(p) = \max_{0 \le i \le n} |x_i|$ and $N(B) \le C(n)B^{n+1}$.

The principle of Batyrev–Manin–Peyre \approx Let $X \subseteq \mathbf{P}^n(K)$ be a variety with many rational points. Then, the asymptotic growth of N(B) should be controlled by the geometry of X.

This principle holds if X is additive (Chambert-Loir-Tschinkel, 2012).

Positivity of the tangent bundle:

Arithmetic Geometry:

Northcott (1949): Let $K \supseteq \mathbf{Q}$ be a number field and let $B \in \mathbf{R}^{>0}$. Then, $N(B) = \#\{p \in \mathbf{P}^n(K) \mid H_n(p) \leq B\}$ is finite.

Example
$$(K = \mathbf{Q})$$
: Let $p = (x_0, \dots, x_n) \in \mathbf{Z}^{n+1}$ s.t. $\gcd(x_0, \dots, x_n) = 1$, then $H_n(p) = \max_{0 \le i \le n} |x_i|$ and $N(B) \le C(n)B^{n+1}$.

The principle of Batyrev–Manin–Peyre \approx Let $X \subseteq \mathbf{P}^n(K)$ be a variety with many rational points. Then, the asymptotic growth of N(B) should be controlled by the geometry of X.

This principle holds if X is additive (Chambert-Loir-Tschinkel, 2012).

Positivity of the tangent bundle:

If X is a smooth additive variety, then T_X is big (**Liu**, 2023).

Example
$$(n = 2)$$
: The algebras $A_i = \mathbf{C}[X, Y] / \mathcal{I}_i \cong_{\mathbf{C}\text{-v.s.}} \mathbf{C}^3$ with

$$\mathcal{I}_1 = \langle X^2, XY, Y^2 \rangle$$
 and $\mathcal{I}_2 = \langle XY, Y - X^2 \rangle$

Hassett-Tschinkel (1999): There is a correspondence

Example (n = 2): The algebras $A_i = \mathbf{C}[X,Y]/\mathcal{I}_i \cong_{\mathbf{C}\text{-v.s.}} \mathbf{C}^3$ with

$$\mathcal{I}_1 = \langle X^2, XY, Y^2 \rangle$$
 and $\mathcal{I}_2 = \langle XY, Y - X^2 \rangle$

define additive structures on $\mathbf{P}^2 = \mathbf{P}(A_i)$ via $\exp(\mathfrak{m}_{A_i})$:

Hassett-Tschinkel (1999): There is a correspondence

Example (n = 2): The algebras $A_i = \mathbf{C}[X, Y]/\mathcal{I}_i \cong_{\mathbf{C}\text{-v.s.}} \mathbf{C}^3$ with

$$\mathcal{I}_1 = \langle X^2, XY, Y^2 \rangle$$
 and $\mathcal{I}_2 = \langle XY, Y - X^2 \rangle$

define additive structures on $\mathbf{P}^2 = \mathbf{P}(A_i)$ via $\exp(\mathfrak{m}_{A_i})$:

Let $(a_1, a_2) \in \mathbf{G}_a^2$, then $\exp([a_1X + a_2Y]) \sim A_i$ induces

$$\rho_1: [x_0, x_1, x_2] \mapsto [x_0 + a_2 x_2, x_1 + a_1 x_2, x_2]$$
 (naive/toric action)

$$\rho_2: [x_0, x_1, x_2] \mapsto [x_0 + a_1 x_1 + (a_2 + \frac{1}{2}a_1^2)x_2, x_1 + a_1 x_2, x_2]$$

where ρ_1 (resp. ρ_2) have infinitely many (resp. 3) orbits.

Suprunenko (1966): $a(n) := \#\{\mathbf{G}_a^n\text{-structures on }\mathbf{P}^n\}/\sim$

Suprunenko (1966): $a(n) \coloneqq \#\{\mathbf{G}_a^n\text{-structures on }\mathbf{P}^n\}/\sim$

n	1	2	3	4	5	≥ 6
a(n)	1	2	4	9	25	+∞

Suprunenko (1966): $a(n) \coloneqq \#\{\mathbf{G}_a^n\text{-structures on }\mathbf{P}^n\}/\sim$

n	1	2	3	4	5	≥ 6
a(n)	1	2	4	9	25	+∞

Theorem (Hassett-Tschinkel, 1999)

Let X be a smooth projective 3-fold with $\rho(X) = 1$.

If X admits a \mathbf{G}_a^3 -structure, then

Suprunenko (1966): $a(n) \coloneqq \#\{\mathbf{G}_a^n\text{-structures on }\mathbf{P}^n\}/\sim$

n	1	2	3	4	5	≥ 6
a(n)	1	2	4	9	25	+∞

Theorem (Hassett-Tschinkel, 1999)

Let X be a smooth projective 3-fold with $\rho(X) = 1$.

If X admits a \mathbf{G}_a^3 -structure, then $X \cong \mathbf{P}^3$ or $\mathbf{Q}^3 \subseteq \mathbf{P}^4$.

Their proof uses the following ingredients:

¹Alternatively, we can use the fact that $Aut(V_5) \cong PGL_2(\mathbf{C}) \times \mathbf{G}_a^3$.

Their proof uses the following ingredients:

Let X be smooth proj. with a \mathbf{G}_a^n -structure such that $\rho(X)$ = r. Then

¹Alternatively, we can use the fact that $Aut(V_5) \cong PGL_2(\mathbf{C}) \times \mathbf{G}_a^3$.

$\S 2. \; \mathbf{G}_a^n$ -STRUCTURES

Their proof uses the following ingredients:

Let X be smooth proj. with a \mathbf{G}_a^n -structure such that $\rho(X) = r$. Then

• $\Delta = X \setminus \mathbf{A}^n = \Delta_1 \cup \ldots \cup \Delta_r$, with Δ_i irreducible divisor.

¹Alternatively, we can use the fact that $Aut(V_5) \cong PGL_2(\mathbf{C}) \times \mathbf{G}_a^3$.

Their proof uses the following ingredients:

- $\Delta = X \setminus \mathbf{A}^n = \Delta_1 \cup \ldots \cup \Delta_r$, with Δ_i irreducible divisor.
- $-K_X = \sum_{i=1}^r a_i \Delta_i$, with $a_i \ge 2$.

¹Alternatively, we can use the fact that $Aut(V_5) \cong PGL_2(\mathbf{C}) \times \mathbf{G}_a^3$.

Their proof uses the following ingredients:

- $\Delta = X \setminus \mathbf{A}^n = \Delta_1 \cup \ldots \cup \Delta_r$, with Δ_i irreducible divisor.
- $-K_X = \sum_{i=1}^r a_i \Delta_i$, with $a_i \ge 2$. In particular, if $\rho(X) = 1$ then $\iota_X \ge 2$.

¹Alternatively, we can use the fact that $Aut(V_5) \cong PGL_2(\mathbf{C}) \times \mathbf{G}_a^3$.

Their proof uses the following ingredients:

- $\Delta = X \setminus \mathbf{A}^n = \Delta_1 \cup \ldots \cup \Delta_r$, with Δ_i irreducible divisor.
- $-K_X = \sum_{i=1}^r a_i \Delta_i$, with $a_i \ge 2$. In particular, if $\rho(X) = 1$ then $\iota_X \ge 2$.
- ullet (n = 3) By Furushima, they are reduced to exclude the case $X\cong V_5$

¹Alternatively, we can use the fact that $\operatorname{Aut}(V_5) \cong \operatorname{PGL}_2(\mathbf{C}) \times \mathbf{G}_a^3$.

Their proof uses the following ingredients:

- $\Delta = X \setminus \mathbf{A}^n = \Delta_1 \cup \ldots \cup \Delta_r$, with Δ_i irreducible divisor.
- $-K_X = \sum_{i=1}^r a_i \Delta_i$, with $a_i \ge 2$. In particular, if $\rho(X) = 1$ then $\iota_X \ge 2$.
- (n=3) By Furushima, they are reduced to exclude the case $X \cong V_5$, i.e., a 3-dim. linear section of $Gr(2,5) \hookrightarrow \mathbf{P}(\Lambda^2\mathbf{C}^5) \cong \mathbf{P}^9$.

¹Alternatively, we can use the fact that $Aut(V_5) \cong PGL_2(\mathbf{C}) \times \mathbf{G}_a^3$.

Their proof uses the following ingredients:

- $\Delta = X \setminus \mathbf{A}^n = \Delta_1 \cup \ldots \cup \Delta_r$, with Δ_i irreducible divisor.
- $-K_X = \sum_{i=1}^r a_i \Delta_i$, with $a_i \ge 2$. In particular, if $\rho(X) = 1$ then $\iota_X \ge 2$.
- (n = 3) By Furushima, they are reduced to exclude the case $X \cong V_5$, i.e., a 3-dim. linear section of $Gr(2,5) \hookrightarrow \mathbf{P}(\Lambda^2 \mathbf{C}^5) \cong \mathbf{P}^9$.
- The contradiction¹ comes from a G_a^3 -equivariant Sarkisov link $V_5 \to \mathbf{Q}^3$ studied by Furushima–Nakayama (1989).

¹Alternatively, we can use the fact that $\operatorname{Aut}(V_5)\cong\operatorname{PGL}_2(\mathbf{C})$ \swarrow \mathbf{G}_a^3 .

Huang-M., 2020

There are 17 families of smooth additive Fano 3-folds with $\rho(X) \ge 2$. Moreover, all of them can be obtained as:

- ullet Equivariant blow-up of ${f P}^3$, or
- ullet Equivariant blow-up of ${f Q}^3$, or
- A toric variety

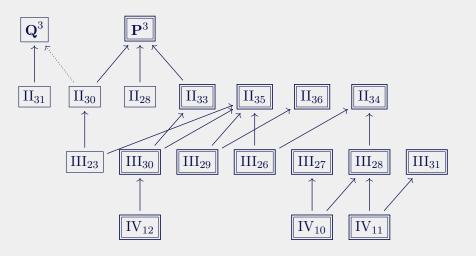
Huang-M., 2020

There are 17 families of smooth additive Fano 3-folds with $\rho(X) \ge 2$. Moreover, all of them can be obtained as:

- ullet Equivariant blow-up of ${f P}^3$, or
- ullet Equivariant blow-up of ${f Q}^3$, or
- A toric variety

A posteriori, we have that:

- Every such X verifies $\rho(X) \le 4$
- Every additive Fano 3-fold with $\rho(X) \ge 2$ which is **primitive** (i.e., $X \not = \operatorname{Bl}_C(Y)$) is toric.



§3. RESULTS (INGREDIENTS FOR $\dim(X) = 3$)

- **1** Iskovskikh y Mori–Mukai: $\underbrace{17}_{\rho=1} + \underbrace{87+1}_{\rho \geq 2}$ Fano threefolds
- Blanchard(-Brion)'s Lemma:
 - (a) If $\sigma: X \to Y$ blow-up: X additive implies Y additive.
 - (b) $\operatorname{Aut}^0(X \times Y) \cong \operatorname{Aut}^0(X) \times \operatorname{Aut}^0(Y)$.

Example:

- (a) If $\rho(Y) = 1$ with $Y \not\cong \mathbf{P}^3$ nor \mathbf{Q}^3 then X is **not** additive.
- (b) (Mori–Mukai): If $\rho(X) \ge 6$ then $X \cong S_d \times \mathbf{P}^1$ with $1 \le d \le 5$. In particular, $\operatorname{Aut}^0(X) \cong \operatorname{PGL}_2(\mathbf{C}) \rtimes \mathbf{G}_a^3$

§3. RESULTS (INGREDIENTS FOR $\dim(X) = 3$)

- Toric case:
 - Arzhantsev–Romanskevich (2017): Combinatorics of additive toric varieties
 - Batyrev (1982) and Watanabe-Watanabe (1982): toric Fano threefolds

Example: $III_{31} \cong \mathbf{P}(\mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1} \oplus (\mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1}(1,1))$

Figure: Fano polytope III₃₁

We got 14 additive toric Fano threefolds. More generally (**Levicán**, 2022): There are 79/124 (resp. 470/866, resp. 3428/7622) smooth additive toric Fano varieties of dimension 4 (resp. 5, resp. 6).

§3. RESULTS (INGREDIENTS FOR $\dim(X) = 3$)

- **Arzhantsev** (2011): X = G/P homogeneous Fano is additive if and only if $R_u(P)$ is commutative (or (G,P) is exceptional). Example: $\mathbf{P}(T_{\mathbf{P}^n}) \cong \{x_0y_0 + \ldots + x_ny_n = 0\} \subseteq \mathbf{P}^n \times \mathbf{P}^n$ is **not** additive.
- **Sharoyko** (2009) and **Arzhantsev–Popovskiy** (2014): Explicit description of the (unique) additive structure of $\mathbf{Q}^n \subseteq \mathbf{P}^n$ and $\mathbf{Q}^n_0 = \mathsf{Cone}(\mathbf{Q}^{n-1})$ "à la Hassett-Tschinkel".
- **6 Kishimoto** (2005): Classified (X, Δ_1, Δ_2) s.t. $\mathbf{A}^3 \hookrightarrow X$ where X Fano, $\rho(X) = 2$, $X \setminus \mathbf{A}^3 = \Delta_1 \cup \Delta_2$ and additionally

(†)
$$K_X + \Delta_1 + \Delta_2$$
 is **not** **nef**

- \sim 16 possible X
- → We checked that 7 among them are additive.

$$n = \dim(X) \ge 4$$
:

Fu-M., 2019

We classified all smooth additive Fano n-folds X such that $\iota_X \ge n-2$. In particular, there are 11 families with $\rho(X) = 1$.

Consider $-K_X = \iota_X A$, where $1 \le \iota_X \le n+1$:

- \bullet $\iota_X = n + 1 \Leftrightarrow X \cong \mathbf{P}^n$ (Kobayashi–Ochiai)
- $\bullet \iota_X = n \Leftrightarrow X \cong \mathbf{Q}^n \text{ (Kobayashi–Ochiai)}$
- 2 $\iota_X = n 1$ "del Pezzo" (Fujita)
- **3** $\iota_X = n 2$ "Fano–Mukai" (Mukai, Mella, Wisniewski)

Two cases:

- (a) If $\rho(X) \ge 2$ we use Blanchard's Lemma.
- (b) If $\rho(X) = 1$ consider the **VMRT** (**Hwang, Mok, Kebekus**):

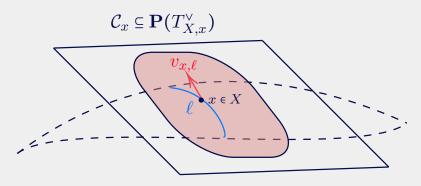


Figure: The VMRT of a Fano manifold X at a general point $x \in X$

Fujita (1980s): Classification of Fano n-folds X such that $\iota_X = n-1$, i.e., *del Pezzo varieties*.

Fujita (1980s): Classification of Fano n-folds X such that $\iota_X = n-1$, i.e., *del Pezzo varieties*. They are classified according to their degree $d \in \{1, \dots, 8\}$.

Fujita (1980s): Classification of Fano n-folds X such that $\iota_X = n-1$, i.e., *del Pezzo varieties*. They are classified according to their degree $d \in \{1, \dots, 8\}$.

Fu–M. (2019): Let X be a smooth del Pezzo variety of dimension n admitting a \mathbf{G}_a^n -structure. Then,

Fujita (1980s): Classification of Fano n-folds X such that $\iota_X = n-1$, i.e., *del Pezzo varieties*. They are classified according to their degree $d \in \{1, \dots, 8\}$.

Fu–M. (2019): Let X be a smooth del Pezzo variety of dimension n admitting a \mathbf{G}_a^n -structure. Then,

$$X \cong \left\{ \begin{array}{ll} \operatorname{Gr}(2,5) \cap L \subseteq \mathbf{P}^9 \text{ linear section} & (\rho(X) = 1, \ d = 5, \ 4 \le n \le 6) \end{array} \right.$$

Fujita (1980s): Classification of Fano n-folds X such that $\iota_X = n-1$, i.e., *del Pezzo varieties*. They are classified according to their degree $d \in \{1, \dots, 8\}$.

Fu–M. (2019): Let X be a smooth del Pezzo variety of dimension n admitting a \mathbf{G}_a^n -structure. Then,

$$X \cong \left\{ \begin{array}{l} \operatorname{Gr}(2,5) \cap L \subseteq \mathbf{P}^9 \text{ linear section} \\ \mathbf{P}^2 \times \mathbf{P}^2, \ \operatorname{Bl}_p(\mathbf{P}^3), \ \mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1 \end{array} \right. \quad \left(\rho(X) = 1, \ d = 5, \ 4 \le n \le 6 \right)$$

§3. RESULTS (IDEA WHEN $\iota_X = n - 1, \ \rho(X) = 1$)

The following condition is conjectured to hold for every smooth additive Fano manifold with $\rho(X) = 1$ (J.-M. Hwang):

- (*) The VMRT $C_x \subseteq \mathbf{P}(T_{X,x}^{\vee})$ of a general point $x \in X$ is smooth
- (1°) Fujita's classification: X is isomorphic to
 - (a) $X_4 \subseteq \mathbf{P}(2, 1, ..., 1)$ cuartic $\to \mathbf{Aut}^0(X) = \{1\}$
 - (b) $X_3 \subseteq \mathbf{P}^{n+1}$ cubic $\rightsquigarrow \operatorname{Aut}^0(X) = \{1\}$
 - (c) Intersection $\mathbf{Q}_1^n \cap \mathbf{Q}_2^n \subseteq \mathbf{P}^{n+2} \rightsquigarrow \operatorname{Aut}^0(X) = \{1\}$
 - (d) $X_6 \subseteq \mathbf{P}(3,2,1,\ldots,1)$ sextic: $\operatorname{Pic}(X) = \mathbf{Z}\mathcal{O}_X(1)$ and $\mathcal{L} = \mathcal{O}_X(1)$ defines a map $\varphi_{\mathcal{L}}: X \to \mathbf{P}^{n-1}$ which is not birational.

Hwang-Fu (2017): this is impossible.

- (e) Linear section of Gr(2,5)
- (2°) **Hwang–Fu** (2017): If X additive with $\rho(X) = 1$, (\star) implies \mathcal{C}_x irreducible and linearly non-degenerate $(\Rightarrow \dim(\mathcal{C}_x) \ge 1)$.

§3. RESULTS (IDEA WHEN $\iota_X = n - 1, \ \rho(X) = 1$)

(3°) We check that if ℓ general minimal rational curve on X additive with $\rho(X)$ = 1 s.t. (*), then:

$$\iota_X = -K_X \cdot \ell \ (= \dim(\mathcal{C}_x) + 2 \ge 3)$$

- (4°) Condition (*) holds for linear sections of Gr(2,5), and then $\iota_X = n-1 \ge 3$, i.e., $n \ge 4$. Hence, $0 \le \operatorname{codim}_{Gr(2,5)}(X) \le 2$.
- (5°) **Arzhantsev** (2011): The homogeneous manifold Gr(2,5) is additive, and its linear sections as well (**Hwang–Fu** (2018)).

Uniqueness of additive structures:

- (**Fu-Hwang**, 2014): If X smooth additive Fano variety with $\rho(X) = 1$ such that $X \not \in \mathbf{P}^n$, then the additive structure on X is unique.
- (Dzhunusov, 2022): Uniqueness criterion for additive toric varieties.

Several remaining issues in the case $\rho(X) = 1$

(A) What is the boundary divisor $\Delta = X \setminus \mathbf{A}^n$? (cf. Hirzebruch's problem)

Several remaining issues in the case $\rho(X)$ = 1

- (A) What is the boundary divisor $\Delta = X \setminus \mathbf{A}^n$? (cf. Hirzebruch's problem)
- (B) What about **singular** varieties? (cf. Equivariant MMP)

Several remaining issues in the case $\rho(X)$ = 1

- (A) What is the boundary divisor $\Delta = X \setminus \mathbf{A}^n$? (cf. Hirzebruch's problem)
- (B) What about singular varieties? (cf. Equivariant MMP)
- (C) What if the ground field $k \neq \overline{k}$? (cf. $k = \mathbf{C}(Y)$ function field)

Let $X_L \coloneqq \operatorname{Gr}(2,5) \cap L \subseteq L \subseteq \mathbf{P}^9$ be a n-dimensional linear section. Then,

• If X_L is smooth, there is a unique \mathbf{G}_a^n -structure on X_L as long as $4 \le n \le 6$. Moreover, we can describe $\Delta = X_L \setminus \mathbf{A}^n$.

- If X_L is smooth, there is a unique \mathbf{G}_a^n -structure on X_L as long as $4 \le n \le 6$. Moreover, we can describe $\Delta = X_L \setminus \mathbf{A}^n$.
- ② If X_L is a terminal 3-fold, there exists (a unique) \mathbf{G}_a^3 -structure on X_L if and only if $\mathrm{Sing}(X_L) = \{3 \text{ nodes}\}.$

- If X_L is smooth, there is a unique \mathbf{G}_a^n -structure on X_L as long as $4 \le n \le 6$. Moreover, we can describe $\Delta = X_L \setminus \mathbf{A}^n$.
- ② If X_L is a terminal 3-fold, there exists (a unique) \mathbf{G}_a^3 -structure on X_L if and only if $\mathrm{Sing}(X_L) = \{3 \text{ nodes}\}.$
- 3 If X_L is a surface with canonical singularities, there exists a \mathbf{G}_a^2 -structure on X_L if and only if

- If X_L is smooth, there is a unique \mathbf{G}_a^n -structure on X_L as long as $4 \le n \le 6$. Moreover, we can describe $\Delta = X_L \setminus \mathbf{A}^n$.
- ② If X_L is a terminal 3-fold, there exists (a unique) \mathbf{G}_a^3 -structure on X_L if and only if $\mathrm{Sing}(X_L) = \{3 \text{ nodes}\}.$
- **3** If X_L is a surface with canonical singularities, there exists a \mathbf{G}_a^2 -structure on X_L if and only if
 - $(\rho_{X_L} = 1) \operatorname{Sing}(X_L) = 1 \operatorname{A}_4$. Here, there are two \mathbf{G}_a^2 -structures.

- If X_L is smooth, there is a unique \mathbf{G}_a^n -structure on X_L as long as $4 \le n \le 6$. Moreover, we can describe $\Delta = X_L \setminus \mathbf{A}^n$.
- ② If X_L is a terminal 3-fold, there exists (a unique) \mathbf{G}_a^3 -structure on X_L if and only if $\mathrm{Sing}(X_L) = \{3 \text{ nodes}\}.$
- **1** If X_L is a surface with canonical singularities, there exists a \mathbf{G}_a^2 -structure on X_L if and only if
 - $(\rho_{X_L} = 1) \operatorname{Sing}(X_L) = 1 \operatorname{A}_4$. Here, there are two \mathbf{G}_a^2 -structures.
 - $(\rho_{X_L} = 2) \operatorname{Sing}(X_L) = 1 \operatorname{A}_3$. Here, the \mathbf{G}_a^2 -structure is unique.

Let $X_L \coloneqq \operatorname{Gr}(2,5) \cap L \subseteq L \subseteq \mathbf{P}^9$ be a *n*-dimensional linear section. Then,

- ① If X_L is smooth, there is a unique \mathbf{G}_a^n -structure on X_L as long as $4 \le n \le 6$. Moreover, we can describe $\Delta = X_L \smallsetminus \mathbf{A}^n$.
- ② If X_L is a terminal 3-fold, there exists (a unique) \mathbf{G}_a^3 -structure on X_L if and only if $\mathrm{Sing}(X_L) = \{3 \text{ nodes}\}.$
- **3** If X_L is a surface with canonical singularities, there exists a \mathbf{G}_a^2 -structure on X_L if and only if
 - $(\rho_{X_L} = 1) \operatorname{Sing}(X_L) = 1 \operatorname{A}_4$. Here, there are two \mathbf{G}_a^2 -structures.
 - $(\rho_{X_L} = 2)$ Sing $(X_L) = 1$ A₃. Here, the \mathbf{G}_a^2 -structure is unique.

Actually, more is true

Let $X_L \coloneqq \operatorname{Gr}(2,5) \cap L \subseteq L \subseteq \mathbf{P}^9$ be a n-dimensional linear section. Then,

- If X_L is smooth, there is a unique \mathbf{G}_a^n -structure on X_L as long as $4 \le n \le 6$. Moreover, we can describe $\Delta = X_L \smallsetminus \mathbf{A}^n$.
- ② If X_L is a terminal 3-fold, there exists (a unique) \mathbf{G}_a^3 -structure on X_L if and only if $\mathrm{Sing}(X_L) = \{3 \text{ nodes}\}.$
- **3** If X_L is a surface with canonical singularities, there exists a \mathbf{G}_a^2 -structure on X_L if and only if
 - $(\rho_{X_L} = 1) \operatorname{Sing}(X_L) = 1 \operatorname{A}_4$. Here, there are two \mathbf{G}_a^2 -structures.
 - $(\rho_{X_L} = 2)$ Sing $(X_L) = 1$ A₃. Here, the \mathbf{G}_a^2 -structure is unique.

Actually, more is true

Let k be a field of characteristic zero, and let Y be a k-form of X_L . Then, along the proof, is possible to take into account the action of $\operatorname{Gal}(\overline{k}/k)$ in order to analyze the existence of $\mathbf{G}_{a,k}^n$ -structures on Y.

§4. Some ingredients for

QUINTIC DEL PEZZO VARIETIES

§4. Some ingredients

We analyze equivariant Sarkisov links that are obtained as linear projections from "maximal" linear subspaces.

§4. Some ingredients

We analyze equivariant Sarkisov links that are obtained as linear projections from "maximal" linear subspaces.

Recall (cf. Todd, 1930):

§4. Some ingredients

We analyze equivariant Sarkisov links that are obtained as linear projections from "maximal" linear subspaces.

Recall (cf. Todd, 1930): Let $G := \mathbf{G}(1,4) \cong \operatorname{Gr}(2,5) \to \mathbf{P}(\Lambda^2 \mathbf{C}^5) \cong \mathbf{P}^9$.

We analyze equivariant Sarkisov links that are obtained as linear projections from "maximal" linear subspaces.

Recall (cf. Todd, 1930): Let
$$G \coloneqq \mathbf{G}(1,4) \cong \operatorname{Gr}(2,5) \hookrightarrow \mathbf{P}(\Lambda^2 \mathbf{C}^5) \cong \mathbf{P}^9$$
.

To every the projective linear flag in ${f P}^4$

$$\Lambda_{\bullet}: \Lambda_0 := \{p\} \subseteq \Lambda_1 := \ell_0 \subseteq \Lambda_2 := \Pi \subseteq \Lambda_3 := \Lambda \subseteq \Lambda_4 = \mathbf{P}^4$$

We analyze equivariant Sarkisov links that are obtained as linear projections from "maximal" linear subspaces.

Recall (cf. Todd, 1930): Let
$$G := \mathbf{G}(1,4) \cong \operatorname{Gr}(2,5) \to \mathbf{P}(\Lambda^2 \mathbf{C}^5) \cong \mathbf{P}^9$$
.

To every the projective linear flag in ${f P}^4$

$$\Lambda_{\bullet}: \Lambda_0 := \{p\} \subseteq \Lambda_1 := \ell_0 \subseteq \Lambda_2 := \Pi \subseteq \Lambda_3 := \Lambda \subseteq \Lambda_4 = \mathbf{P}^4$$

we can associate a Schubert variety of type (a, b) as follows:

We analyze equivariant Sarkisov links that are obtained as linear projections from "maximal" linear subspaces.

Recall (cf. Todd, 1930): Let
$$G \coloneqq \mathbf{G}(1,4) \cong \operatorname{Gr}(2,5) \hookrightarrow \mathbf{P}(\Lambda^2 \mathbf{C}^5) \cong \mathbf{P}^9$$
.

To every the projective linear flag in ${f P}^4$

$$\Lambda_{\bullet}: \quad \Lambda_0 \coloneqq \{p\} \subseteq \Lambda_1 \coloneqq \ell_0 \subseteq \Lambda_2 \coloneqq \Pi \subseteq \Lambda_3 \coloneqq \Lambda \subseteq \Lambda_4 = \mathbf{P}^4$$

we can associate a Schubert variety of type (a, b) as follows:

$$\sigma_{a,b}(\Lambda_{\bullet}) \coloneqq \{\ell \subseteq \mathbf{P}^4 \text{ such that } \ell \cap \Lambda_{3-a} \neq \emptyset \text{ and } \ell \subseteq \Lambda_{4-b}\} \subseteq \mathbf{G}(1,4)$$

We analyze equivariant Sarkisov links that are obtained as linear projections from "maximal" linear subspaces.

Recall (cf. Todd, 1930): Let
$$G \coloneqq \mathbf{G}(1,4) \cong \operatorname{Gr}(2,5) \hookrightarrow \mathbf{P}(\Lambda^2 \mathbf{C}^5) \cong \mathbf{P}^9$$
.

To every the projective linear flag in ${f P}^4$

$$\Lambda_{\bullet}: \quad \Lambda_0 \coloneqq \{p\} \subseteq \Lambda_1 \coloneqq \ell_0 \subseteq \Lambda_2 \coloneqq \Pi \subseteq \Lambda_3 \coloneqq \Lambda \subseteq \Lambda_4 = \mathbf{P}^4$$

we can associate a Schubert variety of type (a, b) as follows:

$$\sigma_{a,b}(\Lambda_{\bullet}) \coloneqq \{\ell \subseteq \mathbf{P}^4 \text{ such that } \ell \cap \Lambda_{3-a} \neq \emptyset \text{ and } \ell \subseteq \Lambda_{4-b}\} \subseteq \mathbf{G}(1,4)$$

Main examples:

$$\bullet \ \sigma_{2,2}(\Pi) = \{\ell \subseteq \mathbf{P}^4 \text{ such that } \ell \subseteq \Pi\} =: P_\Pi \cong \mathbf{P}^2.$$

We analyze equivariant Sarkisov links that are obtained as linear projections from "maximal" linear subspaces.

Recall (cf. Todd, 1930): Let
$$G \coloneqq \mathbf{G}(1,4) \cong \operatorname{Gr}(2,5) \hookrightarrow \mathbf{P}(\Lambda^2 \mathbf{C}^5) \cong \mathbf{P}^9$$
.

To every the projective linear flag in ${f P}^4$

$$\Lambda_{\bullet}: \quad \Lambda_0 \coloneqq \{p\} \subseteq \Lambda_1 \coloneqq \ell_0 \subseteq \Lambda_2 \coloneqq \Pi \subseteq \Lambda_3 \coloneqq \Lambda \subseteq \Lambda_4 = \mathbf{P}^4$$

we can associate a Schubert variety of type (a, b) as follows:

$$\sigma_{a,b}(\Lambda_{\bullet}) \coloneqq \{\ell \subseteq \mathbf{P}^4 \text{ such that } \ell \cap \Lambda_{3-a} \neq \emptyset \text{ and } \ell \subseteq \Lambda_{4-b}\} \subseteq \mathbf{G}(1,4)$$

Main examples:

- $\bullet \quad \sigma_{2,2}(\Pi) = \{ \ell \subseteq \mathbf{P}^4 \text{ such that } \ell \subseteq \Pi \} =: P_{\Pi} \cong \mathbf{P}^2.$
- ② $\sigma_{3,1}(p \in \Lambda) = \{\ell \subseteq \mathbf{P}^4 \text{ such that } p \in \ell \subseteq \Lambda\} =: P_{p,\Lambda} \cong \mathbf{P}^2.$

We analyze equivariant Sarkisov links that are obtained as linear projections from "maximal" linear subspaces.

Recall (cf. Todd, 1930): Let
$$G \coloneqq \mathbf{G}(1,4) \cong \operatorname{Gr}(2,5) \hookrightarrow \mathbf{P}(\Lambda^2 \mathbf{C}^5) \cong \mathbf{P}^9$$
.

To every the projective linear flag in ${f P}^4$

$$\Lambda_{\bullet}: \quad \Lambda_0 \coloneqq \{p\} \subseteq \Lambda_1 \coloneqq \ell_0 \subseteq \Lambda_2 \coloneqq \Pi \subseteq \Lambda_3 \coloneqq \Lambda \subseteq \Lambda_4 = \mathbf{P}^4$$

we can associate a Schubert variety of type (a,b) as follows:

$$\sigma_{a,b}(\Lambda_{\bullet}) \coloneqq \{\ell \subseteq \mathbf{P}^4 \text{ such that } \ell \cap \Lambda_{3-a} \neq \emptyset \text{ and } \ell \subseteq \Lambda_{4-b}\} \subseteq \mathbf{G}(1,4)$$

Main examples:

- $\bullet \quad \sigma_{2,2}(\Pi) = \{ \ell \subseteq \mathbf{P}^4 \text{ such that } \ell \subseteq \Pi \} =: P_{\Pi} \cong \mathbf{P}^2.$
- $\sigma_{3,1}(p \in \Lambda) = \{\ell \subseteq \mathbf{P}^4 \text{ such that } p \in \ell \subseteq \Lambda\} =: P_{p,\Lambda} \cong \mathbf{P}^2.$
- $\sigma_{3,0}(p) = \{\ell \subseteq \mathbf{P}^4 \text{ such that } p \in \ell\} =: V_p \cong \mathbf{P}^3.$

• Following **Piontkowski–Van de Ven** (1999), we compute $\operatorname{Aut}(X)$ and the induced action on the Hilbert scheme $\Sigma_{a,b}(X)$.

- Following **Piontkowski–Van de Ven** (1999), we compute $\operatorname{Aut}(X)$ and the induced action on the Hilbert scheme $\Sigma_{a,b}(X)$.
- According to Fujita (1981), we examinate linear projections from linear subspaces.

- Following **Piontkowski–Van de Ven** (1999), we compute $\operatorname{Aut}(X)$ and the induced action on the Hilbert scheme $\Sigma_{a,b}(X)$.
- According to Fujita (1981), we examinate linear projections from linear subspaces. To do it equivariantly, we need:

- Following **Piontkowski–Van de Ven** (1999), we compute $\operatorname{Aut}(X)$ and the induced action on the Hilbert scheme $\Sigma_{a,b}(X)$.
- According to Fujita (1981), we examinate linear projections from linear subspaces. To do it equivariantly, we need:

Additive refinement of Blanchard's Lemma (DKM, 2024)

Let $f: X \to Y$ a proper morphism with connected fibers between algebraic varieties, with $n = \dim(X)$ and $m = \dim(Y)$. Then,

• Any G_a^n -structure on X induces a unique G_a^m -structure on Y.

§5. Sketch of Proof

Start with $G := Gr(2,5) \subseteq \mathbf{P}^9$.

Start with $G := Gr(2,5) \subseteq \mathbf{P}^9$.

Existence of a G_a^6 -structure:

Start with $G := Gr(2,5) \subseteq \mathbf{P}^9$.

Existence of a G_a^6 -structure:

Let ${f P}^3\cong V_p\subseteq G\hookrightarrow {f P}^9$ be a $\sigma_{3,0}$ -volume, and consider the linear projection

Start with $G := Gr(2,5) \subseteq \mathbf{P}^9$.

Existence of a G_a^6 -structure:

Let ${f P}^3\cong V_p\subseteq G\hookrightarrow {f P}^9$ be a $\sigma_{3,0}$ -volume, and consider the linear projection

$$\pi_{V_p}:G\to \mathbf{P}^5,$$

Start with $G := Gr(2,5) \subseteq \mathbf{P}^9$.

Existence of a G_a^6 -structure:

Let ${f P}^3\cong V_p\subseteq G\hookrightarrow {f P}^9$ be a $\sigma_{3,0}$ -volume, and consider the linear projection

$$\pi_{V_p}:G\to \mathbf{P}^5,$$

whose image is the smooth quartic $Gr(2,4) \cong \mathbf{Q}^4 \subseteq \mathbf{P}^5$.

Start with $G := Gr(2,5) \subseteq \mathbf{P}^9$.

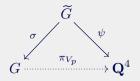
Existence of a G_a^6 -structure:

Let ${f P}^3\cong V_p\subseteq G\hookrightarrow {f P}^9$ be a $\sigma_{3,0}$ -volume, and consider the linear projection

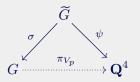
$$\pi_{V_p}:G\to \mathbf{P}^5,$$

whose image is the smooth quartic $Gr(2,4) \cong \mathbf{Q}^4 \subseteq \mathbf{P}^5$.

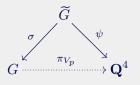
The blow-up of of the indeterminacy locus $V_p \cong \mathbf{P}^3$ induces the following:



²More precisely, is the extension of a spinor bundle and the trivial line bundle.



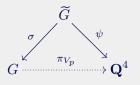
²More precisely, is the extension of a spinor bundle and the trivial line bundle.



Here:

1 Sharoyko (2009): $Gr(2,4) \cong \mathbf{Q}^4 \subseteq \mathbf{P}^5$ admits a *unique* \mathbf{G}_a^4 -structure.

²More precisely, is the extension of a spinor bundle and the trivial line bundle.

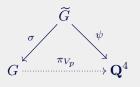


Here:

1 Sharoyko (2009): $Gr(2,4) \cong \mathbf{Q}^4 \subseteq \mathbf{P}^5$ admits a *unique* \mathbf{G}_a^4 -structure.

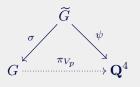
 $\widetilde{G} := \mathrm{Bl}_{V_p}(G) \cong \mathsf{Locally} \ \mathsf{trivial} \ \mathbf{P}^2\text{-bundle} \ \psi : \widetilde{G} \longrightarrow \mathbf{Q}^4.$

²More precisely, is the extension of a spinor bundle and the trivial line bundle.



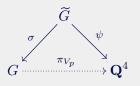
- **1** Sharoyko (2009): $Gr(2,4) \cong \mathbf{Q}^4 \subseteq \mathbf{P}^5$ admits a *unique* \mathbf{G}_a^4 -structure.
- $\widetilde{G} := \mathrm{Bl}_{V_p}(G) \cong \mathsf{Locally} \ \mathsf{trivial} \ \mathbf{P}^2\text{-bundle} \ \psi : \widetilde{G} \longrightarrow \mathbf{Q}^4.$
- **3** $\widetilde{G} \cong \mathbf{P}(E)$, where E is a canonically defined rank 3 v.b. on \mathbf{Q}^4 .

²More precisely, is the extension of a spinor bundle and the trivial line bundle.



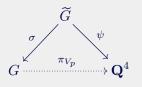
- **1** Sharoyko (2009): $Gr(2,4) \cong \mathbf{Q}^4 \subseteq \mathbf{P}^5$ admits a *unique* \mathbf{G}_a^4 -structure.
- ② $\widetilde{G} \coloneqq \mathrm{Bl}_{V_p}(G) \cong \mathsf{Locally\ trivial\ } \mathbf{P}^2\text{-bundle\ } \psi : \widetilde{G} \longrightarrow \mathbf{Q}^4.$
- ③ $\widetilde{G} \cong \mathbf{P}(E)$, where E is a canonically defined² rank 3 v.b. on \mathbf{Q}^4 . In particular, it carries a canonical \mathbf{G}_a^4 -linearization.

²More precisely, is the extension of a spinor bundle and the trivial line bundle.



- **1** Sharoyko (2009): $Gr(2,4) \cong \mathbf{Q}^4 \subseteq \mathbf{P}^5$ admits a *unique* \mathbf{G}_a^4 -structure.
- ② $\widetilde{G} := \mathrm{Bl}_{V_p}(G) \cong \mathsf{Locally} \ \mathsf{trivial} \ \mathbf{P}^2\text{-bundle} \ \psi : \widetilde{G} \longrightarrow \mathbf{Q}^4.$
- **3** $\widetilde{G} \cong \mathbf{P}(E)$, where E is a canonically defined² rank 3 v.b. on \mathbf{Q}^4 . In particular, it carries a canonical \mathbf{G}_{σ}^4 -linearization.
- We use the properties of E to extend the \mathbf{G}_a^4 -structure on \mathbf{Q}^4 to a unique \mathbf{G}_a^6 -structure on \widetilde{G} .

²More precisely, is the extension of a spinor bundle and the trivial line bundle.



- **1** Sharoyko (2009): $Gr(2,4) \cong \mathbf{Q}^4 \subseteq \mathbf{P}^5$ admits a *unique* \mathbf{G}_a^4 -structure.
- ② $\widetilde{G} := \mathrm{Bl}_{V_p}(G) \cong \mathsf{Locally\ trivial\ } \mathbf{P}^2\text{-bundle\ } \psi : \widetilde{G} \longrightarrow \mathbf{Q}^4.$
- **3** $\widetilde{G} \cong \mathbf{P}(E)$, where E is a canonically defined² rank 3 v.b. on \mathbf{Q}^4 . In particular, it carries a canonical \mathbf{G}_a^4 -linearization.
- We use the properties of E to extend the \mathbf{G}_a^4 -structure on \mathbf{Q}^4 to a unique \mathbf{G}_a^6 -structure on \widetilde{G} . We conclude by Blanchard's lemma.

²More precisely, is the extension of a spinor bundle and the trivial line bundle.

Uniqueness of a G_a^6 -structure:

Uniqueness of a G_a^6 -structure:

Recall that $\Sigma_{3,0}(G) \cong \mathbf{P}^4$, and $\operatorname{Aut}(G) \cong \operatorname{PGL}_5(\mathbf{C}) \curvearrowright \Sigma_{3,0}(G)$ is transitive.

Uniqueness of a G_a^6 -structure:

Recall that $\Sigma_{3,0}(G) \cong \mathbf{P}^4$, and $\operatorname{Aut}(G) \cong \operatorname{PGL}_5(\mathbf{C}) \curvearrowright \Sigma_{3,0}(G)$ is transitive.

Let $\mathbf{G}_a^6 \times \mathrm{Gr}(2,5) \longrightarrow \mathrm{Gr}(2,5)$ be any \mathbf{G}_a^6 -structure. Then:

Uniqueness of a G_a^6 -structure:

Recall that $\Sigma_{3,0}(G) \cong \mathbf{P}^4$, and $\operatorname{Aut}(G) \cong \operatorname{PGL}_5(\mathbf{C}) \curvearrowright \Sigma_{3,0}(G)$ is transitive.

Let $\mathbf{G}_a^6 \times \mathrm{Gr}(2,5) \longrightarrow \mathrm{Gr}(2,5)$ be any \mathbf{G}_a^6 -structure. Then:

1 Borel fixed-point theorem: There is G_a^6 -stable $\sigma_{3,0}$ -volume $V_p \subseteq G$.

Uniqueness of a G_a^6 -structure:

Recall that $\Sigma_{3,0}(G) \cong \mathbf{P}^4$, and $\operatorname{Aut}(G) \cong \operatorname{PGL}_5(\mathbf{C}) \curvearrowright \Sigma_{3,0}(G)$ is transitive.

Let $\mathbf{G}_a^6 \times \operatorname{Gr}(2,5) \longrightarrow \operatorname{Gr}(2,5)$ be any \mathbf{G}_a^6 -structure. Then:

- **1** Borel fixed-point theorem: There is \mathbf{G}_a^6 -stable $\sigma_{3,0}$ -volume $V_p \subseteq G$.
- ② (Corollary of) Blanchard's lemma: there is a \mathbf{G}_a^4 -structure on \mathbf{Q}^4 , which is known to be unique.

Uniqueness of a G_a^6 -structure:

Recall that $\Sigma_{3,0}(G) \cong \mathbf{P}^4$, and $\operatorname{Aut}(G) \cong \operatorname{PGL}_5(\mathbf{C}) \curvearrowright \Sigma_{3,0}(G)$ is transitive.

Let $\mathbf{G}_a^6 \times \operatorname{Gr}(2,5) \longrightarrow \operatorname{Gr}(2,5)$ be any \mathbf{G}_a^6 -structure. Then:

- ② (Corollary of) Blanchard's lemma: there is a \mathbf{G}_a^4 -structure on \mathbf{Q}^4 , which is known to be unique.
- **3** Together with the uniqueness of the G_a^6 -linearization of E (where $\widetilde{G} \cong \mathbf{P}(E)$), we get a unique G_a^6 -structure on G preserving V_p .

Uniqueness of a G_a^6 -structure:

Recall that $\Sigma_{3,0}(G) \cong \mathbf{P}^4$, and $\operatorname{Aut}(G) \cong \operatorname{PGL}_5(\mathbf{C}) \curvearrowright \Sigma_{3,0}(G)$ is transitive.

Let $\mathbf{G}_a^6 \times \operatorname{Gr}(2,5) \longrightarrow \operatorname{Gr}(2,5)$ be any \mathbf{G}_a^6 -structure. Then:

- **1** Borel fixed-point theorem: There is \mathbf{G}_a^6 -stable $\sigma_{3,0}$ -volume $V_p \subseteq G$.
- ② (Corollary of) Blanchard's lemma: there is a \mathbf{G}_a^4 -structure on \mathbf{Q}^4 , which is known to be unique.
- **3** Together with the uniqueness of the G_a^6 -linearization of E (where $\widetilde{G} \cong \mathbf{P}(E)$), we get a unique G_a^6 -structure on G preserving V_p .
- Since $\operatorname{Aut}(G)$ acts transitively on $\Sigma_{3,0}(G)$, we are done.

Uniqueness of a G_a^6 -structure:

Recall that $\Sigma_{3,0}(G) \cong \mathbf{P}^4$, and $\operatorname{Aut}(G) \cong \operatorname{PGL}_5(\mathbf{C}) \curvearrowright \Sigma_{3,0}(G)$ is transitive.

Let $\mathbf{G}_a^6 \times \operatorname{Gr}(2,5) \longrightarrow \operatorname{Gr}(2,5)$ be any \mathbf{G}_a^6 -structure. Then:

- **1** Borel fixed-point theorem: There is \mathbf{G}_a^6 -stable $\sigma_{3,0}$ -volume $V_p \subseteq G$.
- ② (Corollary of) Blanchard's lemma: there is a ${\bf G}_a^4$ -structure on ${\bf Q}^4$, which is known to be unique.
- **3** Together with the uniqueness of the G_a^6 -linearization of E (where $\widetilde{G} \cong \mathbf{P}(E)$), we get a unique G_a^6 -structure on G preserving V_p .
- Since Aut(G) acts transitively on $\Sigma_{3,0}(G)$, we are done.

Remark (Lie theory)

Using the fact that $Gr(2,5) \cong GL_5/P$ is a rational homogeneous space, we can exhibit the desired G_a^6 -structure explicitly in Plücker coordinates.

The boundary divisor $\Delta = G \setminus \mathbf{A}^6$:

The boundary divisor $\Delta = G \setminus \mathbf{A}^6$:

Let $\mathbf{P}^2 \cong P_{\Pi} \subseteq G \hookrightarrow \mathbf{P}^9$ be a $\sigma_{2,2}$ -plane, and the (surjective) linear projection

The boundary divisor $\Delta = G \setminus \mathbf{A}^6$:

Let $\mathbf{P}^2 \cong P_{\Pi} \subseteq G \hookrightarrow \mathbf{P}^9$ be a $\sigma_{2,2}$ -plane, and the (surjective) linear projection

$$\pi_{P_{\Pi}}:G\to \mathbf{P}^6.$$

The boundary divisor $\Delta = G \setminus \mathbf{A}^6$:

Let $\mathbf{P}^2 \cong P_{\Pi} \subseteq G \hookrightarrow \mathbf{P}^9$ be a $\sigma_{2,2}$ -plane, and the (surjective) linear projection

$$\pi_{P_{\Pi}}:G\to \mathbf{P}^6.$$

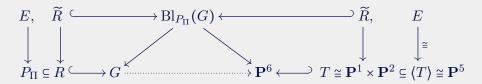
We check that there is a unique divisor $R \in |\mathcal{O}_G(1) \otimes \mathcal{I}_{P_{\pi}}^2|$ such that

The boundary divisor $\Delta = G \setminus \mathbf{A}^6$:

Let $\mathbf{P}^2 \cong P_\Pi \subseteq G \hookrightarrow \mathbf{P}^9$ be a $\sigma_{2,2}$ -plane, and the (surjective) linear projection

$$\pi_{P_{\Pi}}:G\to \mathbf{P}^6.$$

We check that there is a unique divisor $R \in |\mathcal{O}_G(1) \otimes \mathcal{I}_{P_{rr}}^2|$ such that

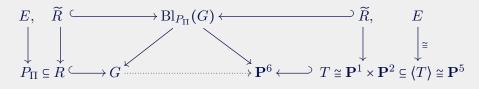


The boundary divisor $\Delta = G \setminus \mathbf{A}^6$:

Let $\mathbf{P}^2 \cong P_{\Pi} \subseteq G \hookrightarrow \mathbf{P}^9$ be a $\sigma_{2,2}$ -plane, and the (surjective) linear projection

$$\pi_{P_{\Pi}}:G\to \mathbf{P}^6.$$

We check that there is a unique divisor $R \in |\mathcal{O}_G(1) \otimes \mathcal{I}_{P_{\pi}}^2|$ such that



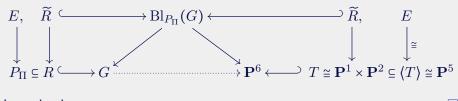
is equivariant.

The boundary divisor $\Delta = G \setminus \mathbf{A}^6$:

Let $\mathbf{P}^2 \cong P_{\Pi} \subseteq G \hookrightarrow \mathbf{P}^9$ be a $\sigma_{2,2}$ -plane, and the (surjective) linear projection

$$\pi_{P_{\Pi}}:G\to \mathbf{P}^6.$$

We check that there is a unique divisor $R \in |\mathcal{O}_G(1) \otimes \mathcal{I}_{P_{\pi}}^2|$ such that



is equivariant.

Moreover, among the infinite G_a^6 -structures on \mathbf{P}^6 , the induced action on \mathbf{P}^6 is the naive (i.e. toric) one.

Smooth linear sections $W \subseteq Z \subseteq G$:

Smooth linear sections $W \subseteq Z \subseteq G$:

Let H, H' be general hyperplanes in $\mathbf{P}^9 = \mathbf{P}(\Lambda^2 \mathbf{C}^5)$, and consider

Smooth linear sections $W \subseteq Z \subseteq G$:

Let H, H' be general hyperplanes in ${\bf P}^9$ = ${\bf P}(\Lambda^2{\bf C}^5)$, and consider

Smooth linear sections $W \subseteq Z \subseteq G$:

Let H, H' be general hyperplanes in $\mathbf{P}^9 = \mathbf{P}(\Lambda^2 \mathbf{C}^5)$, and consider

- **1** $Z \coloneqq G \cap H \subseteq \mathbf{P}^8$ smooth quintic del Pezzo fivefold.
- **2** $W := G \cap H \cap H' \subseteq \mathbf{P}^7$ smooth quintic del Pezzo fourfold.

Smooth linear sections $W \subseteq Z \subseteq G$:

Let H, H' be general hyperplanes in $\mathbf{P}^9 = \mathbf{P}(\Lambda^2 \mathbf{C}^5)$, and consider

- **1** $Z \coloneqq G \cap H \subseteq \mathbf{P}^8$ smooth quintic del Pezzo fivefold.
- ② $W := G \cap H \cap H' \subseteq \mathbf{P}^7$ smooth quintic del Pezzo fourfold.

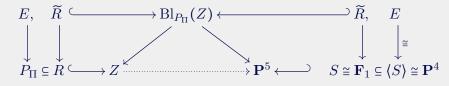
For a $\sigma_{2,2}$ -plane $\mathbf{P}^2 \cong P_{\Pi} \subseteq W \subseteq Z$, the diagrams

Smooth linear sections $W \subseteq Z \subseteq G$:

Let H, H' be general hyperplanes in $\mathbf{P}^9 = \mathbf{P}(\Lambda^2 \mathbf{C}^5)$, and consider

- **1** $Z := G \cap H \subseteq \mathbf{P}^8$ smooth quintic del Pezzo fivefold.
- **2** $W := G \cap H \cap H' \subseteq \mathbf{P}^7$ smooth quintic del Pezzo fourfold.

For a $\sigma_{2,2}$ -plane $\mathbf{P}^2 \cong P_{\Pi} \subseteq W \subseteq Z$, the diagrams

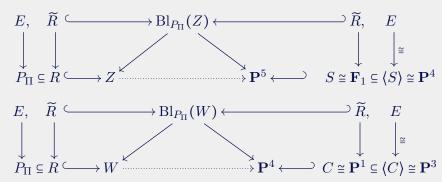


Smooth linear sections $W \subseteq Z \subseteq G$:

Let H, H' be general hyperplanes in $\mathbf{P}^9 = \mathbf{P}(\Lambda^2 \mathbf{C}^5)$, and consider

- **1** $Z := G \cap H \subseteq \mathbf{P}^8$ smooth quintic del Pezzo fivefold.
- **2** $W := G \cap H \cap H' \subseteq \mathbf{P}^7$ smooth quintic del Pezzo fourfold.

For a $\sigma_{2,2}$ -plane $\mathbf{P}^2 \cong P_{\Pi} \subseteq W \subseteq Z$, the diagrams

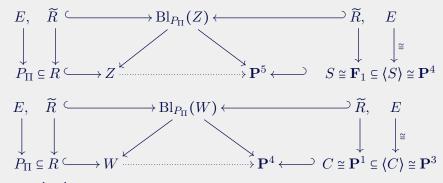


Smooth linear sections $W \subseteq Z \subseteq G$:

Let H, H' be general hyperplanes in $\mathbf{P}^9 = \mathbf{P}(\Lambda^2 \mathbf{C}^5)$, and consider

- **1** $Z := G \cap H \subseteq \mathbf{P}^8$ smooth quintic del Pezzo fivefold.
- **2** $W := G \cap H \cap H' \subseteq \mathbf{P}^7$ smooth quintic del Pezzo fourfold.

For a $\sigma_{2,2}$ -plane $\mathbf{P}^2 \cong P_{\Pi} \subseteq W \subseteq Z$, the diagrams



are equivariant,

Smooth linear sections $W \subseteq Z \subseteq G$:

Let H, H' be general hyperplanes in $\mathbf{P}^9 = \mathbf{P}(\Lambda^2 \mathbf{C}^5)$, and consider

- **1** $Z \coloneqq G \cap H \subseteq \mathbf{P}^8$ smooth quintic del Pezzo fivefold.
- $W := G \cap H \cap H' \subseteq \mathbf{P}^7$ smooth quintic del Pezzo fourfold.

For a $\sigma_{2,2}$ -plane $\mathbf{P}^2 \cong P_{\Pi} \subseteq W \subseteq Z$, the diagrams

are equivariant, and induce the naive G_a^n -structure on \mathbf{P}^n .

§6. The singular case

The case of terminal threefolds:

The case of terminal threefolds:

1 By Prokhorov's classification of G-del Pezzo threefolds (2013), we are left to analyze threefolds X with $s(X) \in \{1,2,3\}$ nodes.

The case of terminal threefolds:

- **1** By Prokhorov's classification of G-del Pezzo threefolds (2013), we are left to analyze threefolds X with $s(X) \in \{1,2,3\}$ nodes.
- ② In the case of s(X) = 1 or 2 nodes, a Q-factorialization is isomorphic to a projectivization P(E) that does not admit a G_a^3 -structure.

The case of terminal threefolds:

- **1** By Prokhorov's classification of G-del Pezzo threefolds (2013), we are left to analyze threefolds X with $s(X) \in \{1,2,3\}$ nodes.
- ② In the case of s(X) = 1 or 2 nodes, a Q-factorialization is isomorphic to a projectivization P(E) that does not admit a G_a^3 -structure.
- ③ If s(X) = 3 there is a birational map $\mathrm{Bl}_{p_1,p_2,p_3}(\mathbf{P}^3) \to X$, where p_1,p_2,p_3 are points in general position. The result follows.

The case of terminal threefolds:

- **1** By Prokhorov's classification of G-del Pezzo threefolds (2013), we are left to analyze threefolds X with $s(X) \in \{1,2,3\}$ nodes.
- ② In the case of s(X) = 1 or 2 nodes, a Q-factorialization is isomorphic to a projectivization P(E) that does not admit a G_a^3 -structure.
- ③ If s(X) = 3 there is a birational map $\mathrm{Bl}_{p_1,p_2,p_3}(\mathbf{P}^3) \to X$, where p_1,p_2,p_3 are points in general position. The result follows.

The case of surfaces with canonical singularites:

The case of terminal threefolds:

- **9** By Prokhorov's classification of G-del Pezzo threefolds (2013), we are left to analyze threefolds X with $s(X) \in \{1,2,3\}$ nodes.
- ② In the case of s(X) = 1 or 2 nodes, a Q-factorialization is isomorphic to a projectivization P(E) that does not admit a G_a^3 -structure.
- ③ If s(X) = 3 there is a birational map $\mathrm{Bl}_{p_1,p_2,p_3}(\mathbf{P}^3) \to X$, where p_1,p_2,p_3 are points in general position. The result follows.

The case of surfaces with canonical singularites:

① By the classification of canonical del Pezzo surfaces, together with the work of Derenthal-Loughran (2010), we are left to study uniqueness of \mathbf{G}_a^2 -structures on $X_L \subseteq \mathbf{P}^5$ with $\mathrm{Sing}(X_L) \in \{1\,\mathrm{A}_3, 1\,\mathrm{A}_4\}$.

The case of terminal threefolds:

- **1** By Prokhorov's classification of G-del Pezzo threefolds (2013), we are left to analyze threefolds X with $s(X) \in \{1,2,3\}$ nodes.
- ② In the case of s(X) = 1 or 2 nodes, a Q-factorialization is isomorphic to a projectivization P(E) that does not admit a G_a^3 -structure.
- ③ If s(X) = 3 there is a birational map $\mathrm{Bl}_{p_1,p_2,p_3}(\mathbf{P}^3) \to X$, where p_1,p_2,p_3 are points in general position. The result follows.

The case of surfaces with canonical singularites:

- **1** By the classification of canonical del Pezzo surfaces, together with the work of Derenthal-Loughran (2010), we are left to study uniqueness of \mathbf{G}_a^2 -structures on $X_L \subseteq \mathbf{P}^5$ with $\mathrm{Sing}(X_L) \in \{1\,\mathrm{A}_3, 1\,\mathrm{A}_4\}$.
- The explicit projective models obtained by Cheltsov-Prokhorov (2021) allow us to conclude.

THANKS FOR YOUR ATTENTION!