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§1. Motivation

Problem 27 on Hirzebruch’s (1954) problem list: Fix n ∈N≥1, and

Classify all the pairs (X,∆) such that:

X: complex projective manifold of dimC(X) = n.
∆ ⊆X effective reduced (boundary) divisor such that X ∖∆ ≅An.

ρ(X) = 1.

In that case,

X is a Fano manifold (i.e., det(TX) = OX(−KX) is ample),

−KX =m∆, m ∈N≥1.

Example: (X,∆) ≅ (Pn,Pn−1).
Recall (Kobayashi-Ochiai): The Fano index of X is the maximum ιX ∈N
such that −KX = ιXA for some A ample divisor. Moreover, 1 ≤ ιX ≤ n + 1,
and ιX = n + 1 (resp. ιX = n) iff X ≅ Pn (resp. X ≅Qn ⊆ Pn+1).
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§1. Motivation

Known cases:

n = 1: (X,∆) ≅ (P1,{pt})

n = 2: (X,∆) ≅ (P2,{line})
n = 3: Several authors (1978–1993).

∆ =Q2
0 = Cone(C) ⊆ P3

C ⊆ P2

Furushima (1993):

(X,∆) ≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(P3,{plane}) (ιX = 4)
(Q3,Q2

0) (ιX = 3)
(V5, Si) i = 1,2 (ιX = 2)
(V22, Si) i = 1,2 (ιX = 1)

Kuznetsov–Prokhorov–Shramov (2018)

These are the only Fano 3-folds with ρ(X) = 1 and infinite Aut(X).
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§2. Gn
a-structures

We will impose some addional geometric restrictions by considering

G, a connected linear algebraic group.

X, an irreducible normal projective variety.

Definition

A G-structure on X is a regular action G ×X Ð→X such that for a
general point x0 ∈X we have that:

1 The stabilizer Stab(x0) is trivial.
2 The orbit G ⋅ x0 ≅ G is dense.

In particular, G↪X is an equivariant compactification.

Main examples:

G =Gn
m = ((C×)n, ⋅) ↝ X toric variety ↝ combinatorics

G =Gn
a = (Cn,+) ↝ X variety with Gn

a-structure
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§2. Gn
a-structures

Arithmetic Geometry:

Northcott (1949): Let K ⊇ Q be a number field and let B ∈ R>0. Then,
N(B) =#{p ∈ Pn(K) ∣Hn(p) ≤ B} is finite.
Example (K = Q): Let p = (x0, . . . , xn) ∈ Zn+1 s.t. gcd(x0, . . . , xn) = 1,
then Hn(p) = max

0≤i≤n
∣xi∣ and N(B) ≤ C(n)Bn+1.

The principle of Batyrev–Manin–Peyre ≈ Let X ⊆ Pn(K) be a variety
with many rational points. Then, the asymptotic growth of N(B) should
be controlled by the geometry of X.

This principle holds if X is additive (Chambert-Loir–Tschinkel, 2012).

Positivity of the tangent bundle:

If X is a smooth additive variety, then TX is big (Liu, 2023).
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§2. Gn
a-structures

Hassett–Tschinkel (1999): There is a correspondence

{ Gn
a -structures on the

projective space Pn }
/∼
↔ { commutative local Artin

C-algebras A ofdimC(A) = n + 1
}
/∼

Example (n = 2): The algebras Ai =C[X,Y ]/Ii ≅C-v.s. C
3 with

I1 = ⟨X2,XY,Y 2⟩ and I2 = ⟨XY,Y −X2⟩

define additive structures on P2 = P(Ai) via exp(mAi):
Let (a1, a2) ∈G2

a, then exp([a1X + a2Y ]) ↷ Ai induces

ρ1 ∶ [x0, x1, x2] ↦ [x0 + a2x2, x1 + a1x2, x2] (naive/toric action)

ρ2 ∶ [x0, x1, x2] ↦ [x0 + a1x1 + (a2 +
1

2
a21)x2, x1 + a1x2, x2]

where ρ1 (resp. ρ2) have infinitely many (resp. 3) orbits.
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§2. Gn
a-structures

Suprunenko (1966): a(n) ∶=#{Gn
a -structures on Pn}/ ∼

n 1 2 3 4 5 ≥ 6
a(n) 1 2 4 9 25 +∞

Theorem (Hassett-Tschinkel, 1999)

Let X be a smooth projective 3-fold with ρ(X) = 1.
If X admits a G3

a-structure, then X ≅ P3 or Q3 ⊆ P4.
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§2. Gn
a-structures

Their proof uses the following ingredients:

Let X be smooth proj. with a Gn
a -structure such that ρ(X) = r. Then

∆ =X ∖An =∆1 ∪ . . . ∪∆r, with ∆i irreducible divisor.

−KX = ∑ri=1 ai∆i, with ai ≥ 2. In particular, if ρ(X) = 1 then ιX ≥ 2.
(n = 3) By Furushima, they are reduced to exclude the case X ≅ V5,
i.e., a 3-dim. linear section of Gr(2,5) ↪ P(Λ2C5) ≅ P9.

The contradiction1 comes from a G3
a-equivariant Sarkisov link

V5 ⇢Q3 studied by Furushima–Nakayama (1989).

1Alternatively, we can use the fact that Aut(V5) ≅ PGL2(C)�Z↩G3
a.
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§3. Results

Huang–M., 2020

There are 17 families of smooth additive Fano 3-folds with ρ(X) ≥ 2.
Moreover, all of them can be obtained as:

Equivariant blow-up of P3, or

Equivariant blow-up of Q3, or

A toric variety

A posteriori, we have that:

Every such X verifies ρ(X) ≤ 4
Every additive Fano 3-fold with ρ(X) ≥ 2 which is primitive (i.e.,
X /≅ BlC(Y )) is toric.
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§3. Results (Ingredients for dim(X) = 3)

1 Iskovskikh y Mori–Mukai: 17

ρ̄=1
+ 87 + 1
²
ρ≥2

Fano threefolds

2 Blanchard(–Brion)’s Lemma:

(a) If σ ∶X → Y blow-up: X additive implies Y additive.
(b) Aut0(X × Y ) ≅ Aut0(X) ×Aut0(Y ).

Example:

(a) If ρ(Y ) = 1 with Y /≅ P3 nor Q3 then X is not additive.

(b) (Mori–Mukai): If ρ(X) ≥ 6 then X ≅ Sd ×P1 with 1 ≤ d ≤ 5. In
particular, Aut0(X) ≅ PGL2(C)��ZZ↩G3

a
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§3. Results (Ingredients for dim(X) = 3)

3 Toric case:

Arzhantsev–Romanskevich (2017): Combinatorics of additive toric
varieties
Batyrev (1982) and Watanabe-Watanabe (1982): toric Fano
threefolds

Example: III31 ≅ P(OP1×P1 ⊕ (OP1×P1(1,1))

v0

Figure: Fano polytope III31

We got 14 additive toric Fano threefolds. More generally (Levicán, 2022):

There are 79/124 (resp. 470/866, resp. 3428/7622) smooth additive toric
Fano varieties of dimension 4 (resp. 5, resp. 6).
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§3. Results (Ingredients for dim(X) = 3)

4 Arzhantsev (2011): X = G/P homogeneous Fano is additive if and
only if Ru(P ) is commutative (or (G,P ) is exceptional).
Example: P(TPn) ≅ {x0y0 + . . .+xnyn = 0} ⊆ Pn ×Pn is not additive.

5 Sharoyko (2009) and Arzhantsev–Popovskiy (2014): Explicit
description of the (unique) additive structure of Qn ⊆ Pn and
Qn

0 = Cone(Qn−1) “à la Hassett-Tschinkel”.

6 Kishimoto (2005): Classified (X,∆1,∆2) s.t. A3 ↪X where X
Fano, ρ(X) = 2, X ∖A3 =∆1 ∪∆2 and additionally

(�)KX +∆1 +∆2 is not nef

↝ 16 possible X
↝ We checked that 7 among them are additive.
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§3. Results

n = dim(X) ≥ 4:

Fu-M., 2019

We classified all smooth additive Fano n-folds X such that ιX ≥ n − 2. In
particular, there are 11 families with ρ(X) = 1.

Consider −KX = ιXA, where 1 ≤ ιX ≤ n + 1:
0 ιX = n + 1⇔X ≅ Pn (Kobayashi–Ochiai)

1 ιX = n⇔X ≅Qn (Kobayashi–Ochiai)

2 ιX = n − 1 “del Pezzo” (Fujita)

3 ιX = n − 2 “Fano–Mukai” (Mukai, Mella, Wisniewski)

Two cases:

(a) If ρ(X) ≥ 2 we use Blanchard’s Lemma.

(b) If ρ(X) = 1 consider the VMRT (Hwang, Mok, Kebekus):
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§3. Results

● x ∈ X

Cx ⊆ P(T∨X,x)

vx,ℓ

ℓ

Figure: The VMRT of a Fano manifold X at a general point x ∈X
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§3. Results

Fujita (1980s): Classification of Fano n-foldsX such that ιX = n−1, i.e., del
Pezzo varieties.

They are classified according to their degree d ∈ {1, . . . ,8}.
Fu–M. (2019): Let X be a smooth del Pezzo variety of dimension n
admitting a Gn

a -structure. Then,

X ≅ { Gr(2,5) ∩L ⊆ P9 linear section (ρ(X) = 1, d = 5, 4 ≤ n ≤ 6)
P2 ×P2, Blp(P3), P1 ×P1 ×P1 (ρ(X) ≥ 2)
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§3. Results (Idea when ιX = n − 1, ρ(X) = 1)

The following condition is conjectured to hold for every smooth additive
Fano manifold with ρ(X) = 1 (J.-M. Hwang):

(⋆) The VMRT Cx ⊆ P(T ∨X,x) of a general point x ∈X is smooth

(1○) Fujita’s classification: X is isomorphic to

(a) X4 ⊆ P(2,1, . . . ,1) cuartic ↝ Aut0(X) = {1}
(b) X3 ⊆ Pn+1 cubic ↝ Aut0(X) = {1}
(c) Intersection Qn

1 ∩Qn
2 ⊆ Pn+2 ↝ Aut0(X) = {1}

(d) X6 ⊆ P(3,2,1, . . . ,1) sextic:
Pic(X) = ZOX(1) and L = OX(1) defines a map φL ∶X ⇢ Pn−1

which is not birational.
Hwang–Fu (2017): this is impossible.

(e) Linear section of Gr(2,5)
(2○) Hwang–Fu (2017): If X additive with ρ(X) = 1, (⋆) implies Cx

irreducible and linearly non-degenerate (⇒ dim(Cx) ≥ 1).
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§3. Results (Idea when ιX = n − 1, ρ(X) = 1)

(3○) We check that if ℓ general minimal rational curve on X additive with
ρ(X) = 1 s.t. (⋆), then:

ιX = −KX ⋅ ℓ (= dim(Cx) + 2 ≥ 3)

(4○) Condition (∗) holds for linear sections of Gr(2,5), and then
ιX = n − 1 ≥ 3, i.e., n ≥ 4. Hence, 0 ≤ codimGr(2,5)(X) ≤ 2.

(5○) Arzhantsev (2011): The homogeneous manifold Gr(2,5) is additive,
and its linear sections as well (Hwang–Fu (2018)).

Uniqueness of additive structures:

(Fu-Hwang, 2014): If X smooth additive Fano variety with ρ(X) = 1
such that X /≃ Pn, then the additive structure on X is unique.

(Dzhunusov, 2022): Uniqueness criterion for additive toric varieties.
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§3. Results

Several remaining issues in the case ρ(X) = 1

(A) What is the boundary divisor ∆ =X ∖An? (cf. Hirzebruch’s problem)

(B) What about singular varieties? (cf. Equivariant MMP)

(C) What if the ground field k ≠ k? (cf. k =C(Y ) function field)
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Dubouloz–Kishimoto–M., 2024

Let XL ∶= Gr(2,5) ∩L ⊆ L ⊆ P9 be a n-dimensional linear section. Then,

1 If XL is smooth, there is a unique Gn
a -structure on XL as long as

4 ≤ n ≤ 6. Moreover, we can describe ∆ =XL ∖An.

2 If XL is a terminal 3-fold, there exists (a unique) G3
a-structure on XL

if and only if Sing(XL) = {3 nodes}.
3 If XL is a surface with canonical singularities, there exists a

G2
a-structure on XL if and only if

(ρXL
= 1) Sing(XL) = 1A4. Here, there are two G2

a-structures.
(ρXL

= 2) Sing(XL) = 1A3. Here, the G2
a-structure is unique.

Actually, more is true

Let k be a field of characteristic zero, and let Y be a k-form of XL. Then,
along the proof, is possible to take into account the action of Gal(k/k) in
order to analyze the existence of Gn

a,k-structures on Y .
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§4. Some ingredients

We analyze equivariant Sarkisov links that are obtained as linear projections
from “maximal” linear subspaces.

Recall (cf. Todd, 1930): Let G ∶=G(1,4) ≅ Gr(2,5) ↪ P(Λ2C5) ≅ P9.

To every the projective linear flag in P4

Λ● ∶ Λ0 ∶= {p} ⊆ Λ1 ∶= ℓ0 ⊆ Λ2 ∶= Π ⊆ Λ3 ∶= Λ ⊆ Λ4 = P4

we can associate a Schubert variety of type (a, b) as follows:

σa,b(Λ●) ∶= {ℓ ⊆ P4 such that ℓ ∩Λ3−a ≠ ∅ and ℓ ⊆ Λ4−b} ⊆G(1,4)

Main examples:

1 σ2,2(Π) = {ℓ ⊆ P4 such that ℓ ⊆ Π} =∶ PΠ ≅ P2.

2 σ3,1(p ∈ Λ) = {ℓ ⊆ P4 such that p ∈ ℓ ⊆ Λ} =∶ Pp,Λ ≅ P2.

3 σ3,0(p) = {ℓ ⊆ P4 such that p ∈ ℓ} =∶ Vp ≅ P3.
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§4. Some ingredients

Following Piontkowski–Van de Ven (1999), we compute Aut(X)
and the induced action on the Hilbert scheme Σa,b(X).

According to Fujita (1981), we examinate linear projections from
linear subspaces.To do it equivariantly, we need:

Additive refinement of Blanchard’s Lemma (DKM, 2024)

Let f ∶X → Y a proper morphism with connected fibers between algebraic
varieties, with n = dim(X) and m = dim(Y ). Then,

Any Gn
a -structure on X induces a unique Gm

a -structure on Y .
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§5. Sketch of Proof
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§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Start with G ∶= Gr(2,5) ⊆ P9.

Existence of a G6
a-structure:

Let P3 ≅ Vp ⊆ G↪ P9 be a σ3,0-volume, and consider the linear projection

πVp ∶ G⇢ P5,

whose image is the smooth quartic Gr(2,4) ≅Q4 ⊆ P5.

The blow-up of of the indeterminacy locus Vp ≅ P3 induces the following:
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§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

G̃

σ

��

ψ

��

G
πVp

// Q4

Here:

1 Sharoyko (2009): Gr(2,4) ≅Q4 ⊆ P5 admits a unique G4
a-structure.

2 G̃ ∶= BlVp(G) ≅ Locally trivial P2-bundle ψ ∶ G̃Ð→Q4.

3 G̃ ≅ P(E), where E is a canonically defined2 rank 3 v.b. on Q4.
In particular, it carries a canonical G4

a-linearization.

4 We use the properties of E to extend the G4
a-structure on Q4 to a

unique G6
a-structure on G̃. We conclude by Blanchard’s lemma.

2More precisely, is the extension of a spinor bundle and the trivial line bundle.
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§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Uniqueness of a G6
a-structure:

Recall that Σ3,0(G) ≅ P4, and Aut(G) ≅ PGL5(C) ↷ Σ3,0(G) is transitive.
Let G6

a ×Gr(2,5) Ð→ Gr(2,5) be any G6
a-structure. Then:

1 Borel fixed-point theorem: There is G6
a-stable σ3,0-volume Vp ⊆ G.

2 (Corollary of) Blanchard’s lemma: there is a G4
a-structure on Q4,

which is known to be unique.

3 Together with the uniqueness of the G6
a-linearization of E (where

G̃ ≅ P(E)), we get a unique G6
a-structure on G preserving Vp.

4 Since Aut(G) acts transitively on Σ3,0(G), we are done.

Remark (Lie theory)

Using the fact that Gr(2,5) ≅ GL5 /P is a rational homogeneous space,
we can exhibit the desired G6

a-structure explicitly in Plücker coordinates.
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§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

The boundary divisor ∆ = G ∖A6:

Let P2 ≅ PΠ ⊆ G↪ P9 be a σ2,2-plane, and the (surjective) linear projection

πPΠ
∶ G⇢ P6.

We check that there is a unique divisor R ∈ ∣OG(1) ⊗ I2PΠ
∣ such that

E, R̃

����

� � // BlPΠ
(G)

{{ ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

// G // P6 T ≅ P1 ×P2 ⊆ ⟨T ⟩ ≅ P5? _oo

is equivariant.

Moreover, among the infinite G6
a-structures on P6, the induced action on

P6 is the naive (i.e. toric) one.
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§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Smooth linear sections W ⊆ Z ⊆ G:

Let H,H ′ be general hyperplanes in P9 = P(Λ2C5), and consider
1 Z ∶= G ∩H ⊆ P8 smooth quintic del Pezzo fivefold.
2 W ∶= G ∩H ∩H ′ ⊆ P7 smooth quintic del Pezzo fourfold.

For a σ2,2-plane P2 ≅ PΠ ⊆W ⊆ Z, the diagrams

E, R̃

����

� � // BlPΠ
(Z)

|| ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

// Z // P5 S ≅ F1 ⊆ ⟨S⟩ ≅ P4? _oo

E, R̃

����

� � // BlPΠ
(W )

{{ ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

//W // P4 C ≅ P1 ⊆ ⟨C⟩ ≅ P3? _oo

are equivariant, and induce the naive Gn
a -structure on Pn.

26 / 27



§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Smooth linear sections W ⊆ Z ⊆ G:
Let H,H ′ be general hyperplanes in P9 = P(Λ2C5), and consider

1 Z ∶= G ∩H ⊆ P8 smooth quintic del Pezzo fivefold.
2 W ∶= G ∩H ∩H ′ ⊆ P7 smooth quintic del Pezzo fourfold.

For a σ2,2-plane P2 ≅ PΠ ⊆W ⊆ Z, the diagrams

E, R̃

����

� � // BlPΠ
(Z)

|| ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

// Z // P5 S ≅ F1 ⊆ ⟨S⟩ ≅ P4? _oo

E, R̃

����

� � // BlPΠ
(W )

{{ ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

//W // P4 C ≅ P1 ⊆ ⟨C⟩ ≅ P3? _oo

are equivariant, and induce the naive Gn
a -structure on Pn.

26 / 27



§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Smooth linear sections W ⊆ Z ⊆ G:
Let H,H ′ be general hyperplanes in P9 = P(Λ2C5), and consider

1 Z ∶= G ∩H ⊆ P8 smooth quintic del Pezzo fivefold.

2 W ∶= G ∩H ∩H ′ ⊆ P7 smooth quintic del Pezzo fourfold.

For a σ2,2-plane P2 ≅ PΠ ⊆W ⊆ Z, the diagrams

E, R̃

����

� � // BlPΠ
(Z)

|| ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

// Z // P5 S ≅ F1 ⊆ ⟨S⟩ ≅ P4? _oo

E, R̃

����

� � // BlPΠ
(W )

{{ ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

//W // P4 C ≅ P1 ⊆ ⟨C⟩ ≅ P3? _oo

are equivariant, and induce the naive Gn
a -structure on Pn.

26 / 27



§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Smooth linear sections W ⊆ Z ⊆ G:
Let H,H ′ be general hyperplanes in P9 = P(Λ2C5), and consider

1 Z ∶= G ∩H ⊆ P8 smooth quintic del Pezzo fivefold.
2 W ∶= G ∩H ∩H ′ ⊆ P7 smooth quintic del Pezzo fourfold.

For a σ2,2-plane P2 ≅ PΠ ⊆W ⊆ Z, the diagrams

E, R̃

����

� � // BlPΠ
(Z)

|| ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

// Z // P5 S ≅ F1 ⊆ ⟨S⟩ ≅ P4? _oo

E, R̃

����

� � // BlPΠ
(W )

{{ ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

//W // P4 C ≅ P1 ⊆ ⟨C⟩ ≅ P3? _oo

are equivariant, and induce the naive Gn
a -structure on Pn.

26 / 27



§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Smooth linear sections W ⊆ Z ⊆ G:
Let H,H ′ be general hyperplanes in P9 = P(Λ2C5), and consider

1 Z ∶= G ∩H ⊆ P8 smooth quintic del Pezzo fivefold.
2 W ∶= G ∩H ∩H ′ ⊆ P7 smooth quintic del Pezzo fourfold.

For a σ2,2-plane P2 ≅ PΠ ⊆W ⊆ Z, the diagrams

E, R̃

����

� � // BlPΠ
(Z)

|| ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

// Z // P5 S ≅ F1 ⊆ ⟨S⟩ ≅ P4? _oo

E, R̃

����

� � // BlPΠ
(W )

{{ ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

//W // P4 C ≅ P1 ⊆ ⟨C⟩ ≅ P3? _oo

are equivariant, and induce the naive Gn
a -structure on Pn.

26 / 27



§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Smooth linear sections W ⊆ Z ⊆ G:
Let H,H ′ be general hyperplanes in P9 = P(Λ2C5), and consider

1 Z ∶= G ∩H ⊆ P8 smooth quintic del Pezzo fivefold.
2 W ∶= G ∩H ∩H ′ ⊆ P7 smooth quintic del Pezzo fourfold.

For a σ2,2-plane P2 ≅ PΠ ⊆W ⊆ Z, the diagrams

E, R̃

����

� � // BlPΠ
(Z)

|| ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

// Z // P5 S ≅ F1 ⊆ ⟨S⟩ ≅ P4? _oo

E, R̃

����

� � // BlPΠ
(W )

{{ ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

//W // P4 C ≅ P1 ⊆ ⟨C⟩ ≅ P3? _oo

are equivariant, and induce the naive Gn
a -structure on Pn.

26 / 27



§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Smooth linear sections W ⊆ Z ⊆ G:
Let H,H ′ be general hyperplanes in P9 = P(Λ2C5), and consider

1 Z ∶= G ∩H ⊆ P8 smooth quintic del Pezzo fivefold.
2 W ∶= G ∩H ∩H ′ ⊆ P7 smooth quintic del Pezzo fourfold.

For a σ2,2-plane P2 ≅ PΠ ⊆W ⊆ Z, the diagrams

E, R̃

����

� � // BlPΠ
(Z)

|| ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

// Z // P5 S ≅ F1 ⊆ ⟨S⟩ ≅ P4? _oo

E, R̃

����

� � // BlPΠ
(W )

{{ ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

//W // P4 C ≅ P1 ⊆ ⟨C⟩ ≅ P3? _oo

are equivariant, and induce the naive Gn
a -structure on Pn.

26 / 27



§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Smooth linear sections W ⊆ Z ⊆ G:
Let H,H ′ be general hyperplanes in P9 = P(Λ2C5), and consider

1 Z ∶= G ∩H ⊆ P8 smooth quintic del Pezzo fivefold.
2 W ∶= G ∩H ∩H ′ ⊆ P7 smooth quintic del Pezzo fourfold.

For a σ2,2-plane P2 ≅ PΠ ⊆W ⊆ Z, the diagrams

E, R̃

����

� � // BlPΠ
(Z)

|| ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

// Z // P5 S ≅ F1 ⊆ ⟨S⟩ ≅ P4? _oo

E, R̃

����

� � // BlPΠ
(W )

{{ ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

//W // P4 C ≅ P1 ⊆ ⟨C⟩ ≅ P3? _oo

are equivariant,

and induce the naive Gn
a -structure on Pn.

26 / 27



§5. Sketch of Proof (XL = Gr(2,5) ∩L↪ P9)

Smooth linear sections W ⊆ Z ⊆ G:
Let H,H ′ be general hyperplanes in P9 = P(Λ2C5), and consider

1 Z ∶= G ∩H ⊆ P8 smooth quintic del Pezzo fivefold.
2 W ∶= G ∩H ∩H ′ ⊆ P7 smooth quintic del Pezzo fourfold.

For a σ2,2-plane P2 ≅ PΠ ⊆W ⊆ Z, the diagrams

E, R̃

����

� � // BlPΠ
(Z)

|| ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

// Z // P5 S ≅ F1 ⊆ ⟨S⟩ ≅ P4? _oo

E, R̃

����

� � // BlPΠ
(W )

{{ ##

R̃, E? _oo

≅
����

PΠ ⊆ R �
�

//W // P4 C ≅ P1 ⊆ ⟨C⟩ ≅ P3? _oo

are equivariant, and induce the naive Gn
a -structure on Pn.

26 / 27



§6. The singular case
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§6. Sketch of Proof (singular case)

The case of terminal threefolds:

1 By Prokhorov’s classification of G-del Pezzo threefolds (2013), we are
left to analyze threefolds X with s(X) ∈ {1,2,3} nodes.

2 In the case of s(X) = 1 or 2 nodes, a Q-factorialization is isomorphic
to a projectivization P(E) that does not admit a G3

a-structure.

3 If s(X) = 3 there is a birational map Blp1,p2,p3(P3) →X, where
p1, p2, p3 are points in general position. The result follows.

The case of surfaces with canonical singularites:

1 By the classification of canonical del Pezzo surfaces, together with the
work of Derenthal–Loughran (2010), we are left to study uniqueness
of G2

a-structures on XL ⊆ P5 with Sing(XL) ∈ {1A3,1A4}.
2 The explicit projective models obtained by Cheltsov–Prokhorov (2021)

allow us to conclude.
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Thanks for your attention!
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